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Abstract— During the two past decades, skyline queries were used in 

several multi-criteria decision support applications. 

Given a dominance relationship in a dataset, a skyline 
query returns the objects that cannot be dominated by any 
other objects. Skyline queries were studied extensively in 
multidimensional spaces, in subspaces, in metric spaces, in 
dynamic spaces, in streaming environments, and in time-
series data. Several algorithms were proposed for skyline 
query processing, such as window- based, progressive, 
distributed, geometric-based, index-based, dividend-
conquer, and dynamic programming algorithms. 
Moreover, several variations were proposed to solve 
application-specific problems like k-dominant skylines, 
top-k dominating queries, spatial skyline queries, and 
others. As the number of objects that are returned in a 
skyline query may become large, there is also an extensive 
study for the cardinality of skyline queries. This extensive 
research depicts the importance of skyline queries and their 
variations in modern applications. 

 
 

       INTRODUCTION 

    In the database world, skyline queries have been 

a hot topic for decades. For many multi-criteria 

decision         making uses, the skyline computation 

has become indispensable. Many algorithms were 

suggested and intensively researched. 

 

     Definition 

A skyline query finds the items in a dataset that are 

not dominated by any other objects, given a 

dominance relationship. To be considered superior 

to another item in a multidimensional dataset, it 

must be at least as excellent in all dimensions and 

superior in at least one. Similar to the well-known 

maximum vector issue, the specification of skyline 

queries in multidimensional datasets is the same [3, 

22]. All data were supposed to be stored in memory 

in these first publications, which framed skyline 

computing as an algorithmic challenge. But these 

days, we have to deal with massive datasets that 

live in secondary memory. Both index-based and 

non-index-based techniques are presented for 

processing skyline queries with the data stored on 

disk(s). 

 

      Example 

A typical example of a skyline query is when 

the data objects are two-dimensional points 

in the Euclidean plane, and the preference 

for each dimension is the minimum. Figure 1 

depicts such an example for 16 points with 

coordinates: a(1,12), b(2,7), c(4,22), 

d(5,14), e(6,5), f(8,19), g(9,9), 

h(10,4), i(12,13), j(15,15), k(15,22), l(16,6), 

m(17,10), 
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n(17,20), o(21,3), p(22,14). The skyline query returns the objects {a,b,e,h,o}. 

 
NON-INDEX-BASED ALGORITHMS 

 

Block-Nested-Loop (BNL) 

A naïve approach for calculating a skyline query 

would need a nested-loop across the whole dataset, 

comparing each item to itself. Due to its inefficient 

quadratic complexity O(N2), this approach is not 

practical for large datasets. 

In a similar vein, the Block-Nested-Loop method 

[4] employs the same notion, although with a 

window (a memory block with constrained size) 

that can only store a certain number of data items. 

whether object p is a potential contender, we check 
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to see whether any other objects in the window 

dominate it. In this case, p would be ruled out. If p 

is more important than any of the window's items, 

they are removed and replaced with p. Finally, if p 

cannot be compared to any of the items in the 

window, it is added to the window. If there are too 

many potential items to fit in the window, they will 

be saved to a temporary file on disk. The BNL 

approach is effective when the skyline result is 

modest; it calls for a certain amount of memory 

(the window) to be allocated in advance. While the 

complexity is still O(N2) in the worst scenario, the 

I/O performance is much improved in most 

situations. The window is kept as a self-organized 

list and items are swapped out such that the most 

dominant set is always preserved in versions of 

BNL presented in [4]. 

In [8], a topological sort with regard to the skyline 

dominant partial relation is given as the basis for a 

new algorithm called sort-filter-skyline (SFS), 

which is essentially a variant of BNL. Step one in 

SFS sorting 

 

improves the speed and stability of query 

processing in a relational database. The SaLSa 

algorithm (Sort and Limit Skyline algorithm) is a 

further modification of SFS introduced in [2], 

which greatly reduces the number of necessary 

dominance tests. 

 
Divide and Conquer (DC) 

A divide-and-conquer algorithm for skyline 
queries proposed in [22], [37]. It computes 

the median value in a dimension, and 

divides the space into two partitions P1, P2. 

Then, it computes the skylines S1, S2 of P1, 

P2, by recursively dividing P1 and P2. The 

recursive partitioning stops when there is 
only one (or few) objects. The overall 

skyline is computed by merging S1 and S2, 

and eliminating the objects of S2 which are 

dominated by any object of S1. The worst 

case complexity is: O(N(logN)
(d−2)

) + O(N 
logN), where d is the dimensionality. 

Variants of DC proposed in [4] for the case 

that a partitioning does not fit into the main 
memory. These variants are based on an m-

way partitioning, where instead of dividing 

into two partitions only, the idea is to divide 

into m partitions in such a way that every 
partition fits into memory. 

Figure 2 depicts a partitioning of the 

example of Figure 1 into 4 partitions P11, 

P12, P21, P22. The partial skylines are S11 = 

{b,e,h}, S12 = {a}, S21 = {l,o}, S22 = {i}, 

respectively. To obtain the final skyline S, 

we need to remove the points that are 

dominated by some point in other partitions. 

Obviously all points in the skyline of P11 

must appear in the final skyline, whereas 

those in P22 are discarded immediately 

because they are dominated by any point in 

P11. The skyline points in P12 is compared 

only with points in P11, because no point in 

P22 or P21 can dominate those in P12. In this 

example, point a is not dominated by b,e,h, 

thus it is included in the final skyline S. 

Similarly, the skyline of P21 is also 

compared with points in P11, which results in 

the removal of l and the remaining of o. 

Finally, the algorithm terminates with the 

skyline set S = {a,b,e,h,o}. 
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Fig. 2. Divide and Conquer algorithm example 
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computing the skyline in 2dimensional 

spaces [28]. It is similar with BBS 

(presented below) with additional pruning 

mechanisms. 

     Bitmap 

An algorithm based in bitmap 

encodings has been proposed in [39]. Each 

object is mapped to am-bit vector, where 

m is the sum of the total number of distinct 

values from each of d dimensions. More 

specifically, if kiis the total number of 

distinct values on the i-th dimension, then 

. Assume that there are 

kidistinct values on the i-th dimension and 

they are ordered ascending. Then, the 

ji-th smallest value is represented by kibits, 

where the leftmost ki−ji+ 1 bits are 1 and 

the remaining bits are 0. 

Let us compute the bitmap 

encodings of our main example of Figure 1. 

In the x dimension we have 14 distinct 

values: 1, 2, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17, 

21, 22, whereas in the y dimension we have 

also 14 distinct values: 3, 4, 5, 6, 7, 9, 10, 

12, 13, 14, 15, 19, 20, 22. Therefore, each 

dimension is encoded with 14 bits (total m = 
28). Table I depicts the final encodings. To 

decide whether a point (x,y) belongs to the 

skyline, the algorithm creates two bit-strings 

sx,syby juxtaposing the rightmost 

corresponding bits (of the order of x and y in 

the corresponding dimensions), from the 

encodings of every point, and check if there 

is only one 1 in the result of the bit-string 

sx&sy. For example, for point h(10,4) we 

must take the 8th rightmost bit from the x-

encodings and the 2nd rightmost bit from 

the y- encodings. Thus, sx= 

1111111100000000 and sy= 

0000000100000010, which results in 

sx&sy= 0000000100000000 meaning that 

point h is included in the skyline. For the 

point g(9,9) we must take 

the 7th rightmost bit from the x-encodings and 

the 6th rightmost bit from the y-encodings. 
Therefore, 
sx= 1111111000000000 and sy= 

0100101100010010; thus sx&sy= 

0100101000000000 which 

means that point g is not member of the 

skyline. The same operations are repeated 
for every point in the dataset, to obtain the 
entire skyline. 

 
II. INDEX-BASED ALGORITHMS 

 

Using B-Trees 

 

In [4], a B-Tree-based approach for two-

dimensional data is described; in this case, the data 

is represented as a B-Tree or B+-Tree, with one 

tree for each dimension. The method generates a 

superset of the skyline by searching both indices 

concurrently, stopping when an item is located in 

both. As described in [10], this is the first phase of 

Fagin's A0 algorithm. p makes it such that any 

building or structure not included in both indices 

cannot be considered part of the skyline. So, items 

that have been checked in at least one index are 

candidates; they are stored in a different set S (the 

superset of the skyline). Finally, any of the 

aforementioned algorithms may be run in S to 

locate the horizon. As suggested in [39], this 

approach may be extended to higher dimension 

spaces. In [1], [27], the technique is further 

developed to allow for progressive query 

processing in dispersed settings. Only sorted access 

is used to get the data, and each data source (which 

may be located in a different part of the web) is 

called upon in turn. After an object (also known as 

a terminating object) has been seen in each index 

and all objects with equal values in each list have 

also been seen, then all the remaining objects not 

yet seen cannot be part of the skyline, as they are 

dominated by the terminating object, as shown and 

proven in both studies ([1], [27]). 

Two indices, one for the x-axis and one for the y-

axis, are used to arrange the data. Object identifiers 

and associated values are stored in each index. The 

numbers are arranged from highest to lowest. The 

items that pass inspection are added to set S in a 

round-robin scan. The object has been found in 

both the x and y indices after 9 value accesses, 

making it the ending object. The last values of x 

and y that were accessed were 6, and there are no 

other objects with that value. Therefore, S = a, b, c, 

d, e, h, l, o, and everything else we haven't seen yet 

(f, g, i, j, k, m, n, p) may be disregarded (because 

they are all subsumed by e). Then, we check S for 

dominances; because a dominates c and d and h 

dominates l, we may eliminate c, d, and l from the 

skyline and be left with S.= {a,b,e,h,o}. 
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Using R-Trees 

 

The skyline may be calculated using a spatial 

index, such as an R-tree, as suggested in [4]. Only 

when all object dimensions are taken into account 

in the skyline query can the R-tree be employed 

effectively. Branches and areas not dominated by a 

candidate item are eliminated when the R-tree is 

explored using DFS. However, this concept was 

proposed as a future paper in [4]. 

1) Searching close by addresses: The NN skyline 

method, initially presented in [21], is the first full 

skyline algorithm based on a spatial index, such as 

an R- tree. Because of its importance to finding 

close neighbors, we refer to it by its initials: NN. 

Repeatedly searching using NNs and a good 

distance estimate, it can pick out landmarks in the 

sky. Using any monotonic distance function, such 

as the Euclidean distance, the technique determines 

the closest NN object to the origin in a specified 

area of space over a series of iterations. Entire areas 

dominated by a candidate item are thrown out 

during the algorithmic process, while portions that 

cannot be thrown out are placed to a to-do list for 

further space partitioning. It is possible to exclude 

area R3 and add regions R1 and R2 to the list for 

further partitioning based on the detection of the 

nearest NN item to the origin (object b in Figure 4 

of our primary example of Figure 1). The NN item 

closest to R1's origin is a, hence there is no need to 

remove any objects or further split the set. The 

nearest neighbor (NN) item in R2's origin is e, and 

by additional partitioning, we may eliminate l. If 

you continue to segment the list, the area marked 

with h,o will not be removed. When the list is 

empty, the algorithm stops. All remaining buildings 

and landmarks are included in the final panorama 

(S = a, b, e, h, o). 
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Fig. 4. NN algorithm example 

 

 

 

The NN algorithm is further optimized in 

[21] for online environments, where the 

first skyline objects are reported 

immediately to the user, and the algorithm 

produces additional results continuously, 

allowing the user to give preferences 

during the running time to control the 

output priority of the next results. 

1) Branch and Bound Skyline algorithm 
(BBS): Like NN, the BBS algorithm 
proposed in [31] is also based on NN 
search. It is a progressive algorithm (it 
reports the skyline objects progressively), 

and it is IO efficient. An R-tree is used for 

indexing, and now the main distance 

measure is L1. A heap structure H is used for 
the processing, which keeps node entries or 
data entries with their corresponding 
minimum distance from the origin, and a set 

S for the skyline objects. 

The minimum distance of a node with a 

minimum bounded rectangle (MBR) is the 

sum of the coordinates of its lower-left 

corner. Initially H contains all entries of 

the root of the R-Tree, and S is empty. 

While the heap is not empty, the top entry 

e of H is removed, and if e is dominated by 

some object in S then e is discarded. 

Otherwise, in case that e is an intermediate 

node, each child eiof e is checked if it is 

dominated or not by some point in S, and if 

not then eiis inserted inH. In case that e is a 

data node, then any contained object 

which is not dominated by some point in S, 

is also inserted in S. The algorithm 

terminates when the heap is empty and the 

final skyline S is reported. 
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Fig. 5. BBS algorithm example 

 

Let us consider our main example of 

Figure 1. Data points are organized in a 

simple R-tree with node capacity 4 as 

depicted in Figure 5. The R-tree has only 

two levels, the root node R and the data 

nodes N1,N2,N3,N4. The NN algorithm starts 

from the root node R and inserts all of its 

entries into the heap H with their 

corresponding minimum distances, i.e. H = 

{(N1,6), (N2,13), (N3,19), (N4,25)}. 
Initially S = ∅. Node N1 is the top heap 
object, thus it is expanded and all of its 

points are inserted into the heap with their 

minimum distances (N1 is removed), i.e., 

H = {(b,9), (e,11), (N2,13), (h,14),(g,18), 

(N3,19), (N4,25)}. 
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thus, it is removed from H and it is inserted 

in S (S = {b}). Point g and node N4 are also 

removed from H as they are dominated by b 

∈ S; therefore, H = {(e,11), (N2,13), (h,14), 

(N3,19)}. Then, point e is the top heap 
object, thus it is removed from H and it is 

inserted in S (S = {b,e}). Points b,edo not 
dominate any remaining heap entry, thus H 

= {(N2,13), (h,14), (N3,19)}. 

Next, node N2 is the top heap object; 
thus it is expanded and all of its points are 
inserted into the heap with their minimum 

distances (N2 is removed), i.e., H = {(a,13), 

(h,14), (d,19), (N3,19), (c,26), (f,27)}. Now 
point a is the top heap object, thus it is 

removed from H and inserted in S (S = 

{a,b,e}). 

Points c,d,fare also removed from H as 

they are dominated by a ∈ S, thus H = 

{(h,14), (N3,19)}. Then, point h is the top 

heap object, thus it is removed from H and 

it is inserted in S (S = {a,b,e,h}). 

Points a,b,e,hdo not dominate any 

remaining heap entry, thus H = {(N3,19)}. 

Node N3 is theonly heap object, thus it is 

expanded and all of its points are inserted 

into the heap with their minimum distances 

(N3 is removed), i.e., H = {(l,22), (o,24), 

(m,27)}. Points l,mare also removed from H 

as they are dominated by h ∈ S, thus H = 

{(o,24)}. Point o is the only heap object and 

it is not dominated by any other object of S, 

thus it is removed from H and inserted in S 

(S = {a,b,e,h,o}). Finally, the heap H is 

empty and the algorithm terminates. 

In [29] an R-tree-based algorithm is 

proposed, which is a variation of BBS that 

adopts a DFS technique with a “forward 

checking” based on a “region dominance” 

relation to reduce space complexity. The 

algorithm is I/O optimal and requires a 

logarithmic space in the worst case in the 

2D space if there are not many overlaps in 

the R-tree. 

 

SKYLINES IN SUBSPACES AND 

CONSTRAINED 

 

There has been much investigation on the issue of 

users' potential interest in skyline queries in data 

subspaces. In [35], a system is developed for 

computing the skyline in any given subspace using 

skyline groups and decisive subspaces. Based on 

this architecture, we offer an effective method 

called SKYEY, which uses a top-down strategy to 

iteratively calculate the skyline in subspaces. The 

number of potential results may be narrowed down 

using pre-sorting techniques and multidimensional 

roll-up and drill-down analyses. The SKYCUBE, 

suggested in [36], [50], is a similar concept; it is the 

union of the skylines of all non-empty subsets of a 

given dimensionality. In order to efficiently share 

computational resources across several relevant 

skyline queries, a number of mechanisms are used. 

The SKYCUBE is suggested to be effectively 

computed using both bottom-up and top-down 

techniques. 

The recovery of the subspace skyline is also the 

focus of a distinct strategy, the SUBSKY, which is 

presented in [41], [42]. As a result of this 

procedure, the dataset may be indexed using a 

single B-tree, which can be applied in any 

relational database, simplifying the data from 

several dimensions. The suggested approach is 

further improved by using several efficient pruning 

heuristics. 

In [48], the issue of updating the skycube in a 

constantly changing environment is investigated. In 

order to strike a good balance between query and 

update costs, we suggest a structure called the 

compressed skycube. In [33], we offer a fast 

technique called STELLAR for computing 

compressed skyline cubes; this algorithm computes 

skyline groups and decisive subspaces without 

exploring all subspaces for skylines, saving us time 

and effort. STELLAR avoids looking for subspace 

skylines in all appropriate subspaces by merely 

computing the whole space skyline and using the 

skyline to build multidimensional skyline groups 

and their decisive subspaces. The issue of 

optimizing multi-user skyline searches across many 

subspaces was investigated in [17]. The CDCA 

method is presented as a fast cell dominance 

calculation solution that can handle any single 

subspace skyline question. To synthetically 

optimize multiple subspace skyline searches, we 

next present a second technique, the AOMSSQ 

algorithm, which is based on CDCA. 

Subspace skyline inquiry on high-dimensional data 

is addressed using described techniques in [19]. 

Skyline computation is conducted solely on a 

subset of potential skyline objects in the subspace, 

whereas query processing mostly consists of basic 
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pruning procedures. 

Limited Subspace Horizon Query research may be 

found in [9]. You might think of this group of 

queries as a broader version of range-constrained 

subspace skyline searches. The STA algorithm, 

which makes use of multiple indexes, is presented 

as a solution to this issue. To determine which 

areas are dominant and which index subtrees may 

be safely discarded, STA employs a variety of 

pruning techniques. 
 

DISTRIBUTED AND PARALLEL 

TECHNIQUES 

 

Distributed skyline searches may be executed 

quickly using the techniques provided in [1], [27] 

under the section on index-based algorithms. In 

[48], researchers provide a different approach to the 

issue of parallelizing skyline query execution 

across a cluster of workstations by using content-

based data segmentation. DSL, the suggested 

distributed method for processing skyline queries, 

finds skyline objects in stages. 

In [46], the processing of skyline queries via P2P 

networks is investigated. To better regulate the 

peers accessed and search messages during skyline 

query processing, we offer a mechanism called SSP 

that splits and numbers the data space across the 

peer nodes.To execute skyline processing without 

identifying the beginning peer, [47] introduces the 

SKYFRAME technique, an extension of the SSP 

approach. 

Since it is practically difficult to ensure 

comprehensive and correct query replies without 

extensive search, [13] presents a research on 

effectively processing skyline inquiries in large-

scale P2P networks. To lessen the burden on nodes, 

approximate methods backed by probabilistic 

assurances are presented. Similar methods are 

presented in [23], which suggests using 

approximation algorithms to allow skyline 

questions in situations when obtaining accurate 

responses would be too expensive. Using heuristics 

based on the local semantics of peer nodes, the 

suggested methods efficiently provide replies of a 

high quality. In [14], we find a comprehensive 

review of skyline processing in extremely dispersed 

settings. 

 

In [44, 45], a threshold-based technique named 

SKYPEER is presented for efficient subspace 

skyline processing in a P2P setting. SKYPEER 

distributes skyline query requests among peers in 

such a manner that the quantity of data transmitted 

is minimized. 

 

In [15], the authors examine the use of MANETs 

for processing "skyline queries," proposing 

methods to lessen the burden of communication 

among mobile nodes and speed up their individual 

processing times. Additionally, [24] investigates 

the topic of query processing and optimization in 

WSNs. In order to efficiently calculate the skyline 

with the greatest chance of existence, the method 

SKY-SEARCH is presented. 

 
 

SKYLINES IN DYNAMIC ENVIRONMENTS 

 

Extensive research has been conducted on the topic 

of skyline query processing in stream settings. 

Skyline questions are suggested to be transformed 

into many separate dynamic window inquiries in 

[20], where a window-based technique is presented. 

In [25], an alternative sliding window method is 

described, which employs a powerful pruning 

mechanism to reduce the number of required parts 

to a minimum. There is more research on Sliding 

Window Skylines on Data Streams in [40], where 

techniques are suggested to continually analyze 

incoming data and gradually update the skyline. 

Both the static and dynamic dimensions are 

required for a continuous skyline inquiry. 

Producing a continuous and reliable skyline 

summary over time is a valuable calculation over 

streaming data sets in such instances. In [30], we 

offer an effective skyline method for a continuous 

time span. In [16], a kinetic-based data structure is 

used to the query processing, offering another 

approach for skyline inquiries for moving objects. 

 
CONCLUSIONS 

 

The methods for processing skyline queries that 

have been suggested during the last decade are the 

topic of this paper's survey. Because of their 

widespread practicality in today's contexts, many 

researchers and developers have explored and 

implemented skyline queries in a wide variety of 

settings. However, there are additional difficulties, 

such as doing complex analysis for skyline 

questions with ambiguous information. 
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