
Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

Questions About the Horizon: A Review
R Gaidhani

1
, Avinash Potdar

2
, Avinash C Taskar

3

Department of Computer Engineering, Sandip Institute of Engineering and Management Abhar

Abstract— During the two past decades, skyline queries were used in

several multi-criteria decision support applications.

Given a dominance relationship in a dataset, a skyline
query returns the objects that cannot be dominated by any
other objects. Skyline queries were studied extensively in
multidimensional spaces, in subspaces, in metric spaces, in
dynamic spaces, in streaming environments, and in time-
series data. Several algorithms were proposed for skyline
query processing, such as window- based, progressive,
distributed, geometric-based, index-based, dividend-
conquer, and dynamic programming algorithms.
Moreover, several variations were proposed to solve
application-specific problems like k-dominant skylines,
top-k dominating queries, spatial skyline queries, and
others. As the number of objects that are returned in a
skyline query may become large, there is also an extensive
study for the cardinality of skyline queries. This extensive
research depicts the importance of skyline queries and their
variations in modern applications.

 INTRODUCTION

 In the database world, skyline queries have been

a hot topic for decades. For many multi-criteria

decision making uses, the skyline computation

has become indispensable. Many algorithms were

suggested and intensively researched.

 Definition

A skyline query finds the items in a dataset that are

not dominated by any other objects, given a

dominance relationship. To be considered superior

to another item in a multidimensional dataset, it

must be at least as excellent in all dimensions and

superior in at least one. Similar to the well-known

maximum vector issue, the specification of skyline

queries in multidimensional datasets is the same [3,

22]. All data were supposed to be stored in memory

in these first publications, which framed skyline

computing as an algorithmic challenge. But these

days, we have to deal with massive datasets that

live in secondary memory. Both index-based and

non-index-based techniques are presented for

processing skyline queries with the data stored on

disk(s).

 Example

A typical example of a skyline query is when

the data objects are two-dimensional points

in the Euclidean plane, and the preference

for each dimension is the minimum. Figure 1

depicts such an example for 16 points with

coordinates: a(1,12), b(2,7), c(4,22),

d(5,14), e(6,5), f(8,19), g(9,9),

h(10,4), i(12,13), j(15,15), k(15,22), l(16,6),

m(17,10),

y

c k

f
n

j

a d i
p

g
m

b

e l
h

o

skyline

O x

n(17,20), o(21,3), p(22,14). The skyline query returns the objects {a,b,e,h,o}.

NON-INDEX-BASED ALGORITHMS

Block-Nested-Loop (BNL)

A naïve approach for calculating a skyline query

would need a nested-loop across the whole dataset,

comparing each item to itself. Due to its inefficient

quadratic complexity O(N2), this approach is not

practical for large datasets.

In a similar vein, the Block-Nested-Loop method

[4] employs the same notion, although with a

window (a memory block with constrained size)

that can only store a certain number of data items.

whether object p is a potential contender, we check

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

to see whether any other objects in the window

dominate it. In this case, p would be ruled out. If p

is more important than any of the window's items,

they are removed and replaced with p. Finally, if p

cannot be compared to any of the items in the

window, it is added to the window. If there are too

many potential items to fit in the window, they will

be saved to a temporary file on disk. The BNL

approach is effective when the skyline result is

modest; it calls for a certain amount of memory

(the window) to be allocated in advance. While the

complexity is still O(N2) in the worst scenario, the

I/O performance is much improved in most

situations. The window is kept as a self-organized

list and items are swapped out such that the most

dominant set is always preserved in versions of

BNL presented in [4].

In [8], a topological sort with regard to the skyline

dominant partial relation is given as the basis for a

new algorithm called sort-filter-skyline (SFS),

which is essentially a variant of BNL. Step one in

SFS sorting

improves the speed and stability of query

processing in a relational database. The SaLSa

algorithm (Sort and Limit Skyline algorithm) is a

further modification of SFS introduced in [2],

which greatly reduces the number of necessary

dominance tests.

Divide and Conquer (DC)

A divide-and-conquer algorithm for skyline
queries proposed in [22], [37]. It computes

the median value in a dimension, and

divides the space into two partitions P1, P2.

Then, it computes the skylines S1, S2 of P1,

P2, by recursively dividing P1 and P2. The

recursive partitioning stops when there is
only one (or few) objects. The overall

skyline is computed by merging S1 and S2,

and eliminating the objects of S2 which are

dominated by any object of S1. The worst

case complexity is: O(N(logN)
(d−2)

) + O(N
logN), where d is the dimensionality.

Variants of DC proposed in [4] for the case

that a partitioning does not fit into the main
memory. These variants are based on an m-

way partitioning, where instead of dividing

into two partitions only, the idea is to divide

into m partitions in such a way that every
partition fits into memory.

Figure 2 depicts a partitioning of the

example of Figure 1 into 4 partitions P11,

P12, P21, P22. The partial skylines are S11 =

{b,e,h}, S12 = {a}, S21 = {l,o}, S22 = {i},

respectively. To obtain the final skyline S,

we need to remove the points that are

dominated by some point in other partitions.

Obviously all points in the skyline of P11

must appear in the final skyline, whereas

those in P22 are discarded immediately

because they are dominated by any point in

P11. The skyline points in P12 is compared

only with points in P11, because no point in

P22 or P21 can dominate those in P12. In this

example, point a is not dominated by b,e,h,

thus it is included in the final skyline S.

Similarly, the skyline of P21 is also

compared with points in P11, which results in

the removal of l and the remaining of o.

Finally, the algorithm terminates with the

skyline set S = {a,b,e,h,o}.

 y

 o
 x

Fig. 2. Divide and Conquer algorithm example

Another interesting variation of DC is an optimal algorithm named (DCSkyline) for

S12

P12

c k P22

f
n

p
a d

j S22

i

S11
g

m

b

e l

P11
h

P21

S21

o

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

computing the skyline in 2dimensional

spaces [28]. It is similar with BBS

(presented below) with additional pruning

mechanisms.

 Bitmap

An algorithm based in bitmap

encodings has been proposed in [39]. Each

object is mapped to am-bit vector, where

m is the sum of the total number of distinct

values from each of d dimensions. More

specifically, if kiis the total number of

distinct values on the i-th dimension, then

. Assume that there are

kidistinct values on the i-th dimension and

they are ordered ascending. Then, the

ji-th smallest value is represented by kibits,

where the leftmost ki−ji+ 1 bits are 1 and

the remaining bits are 0.

Let us compute the bitmap

encodings of our main example of Figure 1.

In the x dimension we have 14 distinct

values: 1, 2, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17,

21, 22, whereas in the y dimension we have

also 14 distinct values: 3, 4, 5, 6, 7, 9, 10,

12, 13, 14, 15, 19, 20, 22. Therefore, each

dimension is encoded with 14 bits (total m =
28). Table I depicts the final encodings. To

decide whether a point (x,y) belongs to the

skyline, the algorithm creates two bit-strings

sx,syby juxtaposing the rightmost

corresponding bits (of the order of x and y in

the corresponding dimensions), from the

encodings of every point, and check if there

is only one 1 in the result of the bit-string

sx&sy. For example, for point h(10,4) we

must take the 8th rightmost bit from the x-

encodings and the 2nd rightmost bit from

the y- encodings. Thus, sx=

1111111100000000 and sy=

0000000100000010, which results in

sx&sy= 0000000100000000 meaning that

point h is included in the skyline. For the

point g(9,9) we must take

the 7th rightmost bit from the x-encodings and

the 6th rightmost bit from the y-encodings.
Therefore,
sx= 1111111000000000 and sy=

0100101100010010; thus sx&sy=

0100101000000000 which

means that point g is not member of the

skyline. The same operations are repeated
for every point in the dataset, to obtain the
entire skyline.

II. INDEX-BASED ALGORITHMS

Using B-Trees

In [4], a B-Tree-based approach for two-

dimensional data is described; in this case, the data

is represented as a B-Tree or B+-Tree, with one

tree for each dimension. The method generates a

superset of the skyline by searching both indices

concurrently, stopping when an item is located in

both. As described in [10], this is the first phase of

Fagin's A0 algorithm. p makes it such that any

building or structure not included in both indices

cannot be considered part of the skyline. So, items

that have been checked in at least one index are

candidates; they are stored in a different set S (the

superset of the skyline). Finally, any of the

aforementioned algorithms may be run in S to

locate the horizon. As suggested in [39], this

approach may be extended to higher dimension

spaces. In [1], [27], the technique is further

developed to allow for progressive query

processing in dispersed settings. Only sorted access

is used to get the data, and each data source (which

may be located in a different part of the web) is

called upon in turn. After an object (also known as

a terminating object) has been seen in each index

and all objects with equal values in each list have

also been seen, then all the remaining objects not

yet seen cannot be part of the skyline, as they are

dominated by the terminating object, as shown and

proven in both studies ([1], [27]).

Two indices, one for the x-axis and one for the y-

axis, are used to arrange the data. Object identifiers

and associated values are stored in each index. The

numbers are arranged from highest to lowest. The

items that pass inspection are added to set S in a

round-robin scan. The object has been found in

both the x and y indices after 9 value accesses,

making it the ending object. The last values of x

and y that were accessed were 6, and there are no

other objects with that value. Therefore, S = a, b, c,

d, e, h, l, o, and everything else we haven't seen yet

(f, g, i, j, k, m, n, p) may be disregarded (because

they are all subsumed by e). Then, we check S for

dominances; because a dominates c and d and h

dominates l, we may eliminate c, d, and l from the

skyline and be left with S.= {a,b,e,h,o}.

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

Using R-Trees

The skyline may be calculated using a spatial

index, such as an R-tree, as suggested in [4]. Only

when all object dimensions are taken into account

in the skyline query can the R-tree be employed

effectively. Branches and areas not dominated by a

candidate item are eliminated when the R-tree is

explored using DFS. However, this concept was

proposed as a future paper in [4].

1) Searching close by addresses: The NN skyline

method, initially presented in [21], is the first full

skyline algorithm based on a spatial index, such as

an R- tree. Because of its importance to finding

close neighbors, we refer to it by its initials: NN.

Repeatedly searching using NNs and a good

distance estimate, it can pick out landmarks in the

sky. Using any monotonic distance function, such

as the Euclidean distance, the technique determines

the closest NN object to the origin in a specified

area of space over a series of iterations. Entire areas

dominated by a candidate item are thrown out

during the algorithmic process, while portions that

cannot be thrown out are placed to a to-do list for

further space partitioning. It is possible to exclude

area R3 and add regions R1 and R2 to the list for

further partitioning based on the detection of the

nearest NN item to the origin (object b in Figure 4

of our primary example of Figure 1). The NN item

closest to R1's origin is a, hence there is no need to

remove any objects or further split the set. The

nearest neighbor (NN) item in R2's origin is e, and

by additional partitioning, we may eliminate l. If

you continue to segment the list, the area marked

with h,o will not be removed. When the list is

empty, the algorithm stops. All remaining buildings

and landmarks are included in the final panorama

(S = a, b, e, h, o).

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

e

d

y
R R3

c k

n

j
p

a
i

g m

b R2

h

O x

Fig. 4. NN algorithm example

The NN algorithm is further optimized in

[21] for online environments, where the

first skyline objects are reported

immediately to the user, and the algorithm

produces additional results continuously,

allowing the user to give preferences

during the running time to control the

output priority of the next results.

1) Branch and Bound Skyline algorithm
(BBS): Like NN, the BBS algorithm
proposed in [31] is also based on NN
search. It is a progressive algorithm (it
reports the skyline objects progressively),

and it is IO efficient. An R-tree is used for

indexing, and now the main distance

measure is L1. A heap structure H is used for
the processing, which keeps node entries or
data entries with their corresponding
minimum distance from the origin, and a set

S for the skyline objects.

The minimum distance of a node with a

minimum bounded rectangle (MBR) is the

sum of the coordinates of its lower-left

corner. Initially H contains all entries of

the root of the R-Tree, and S is empty.

While the heap is not empty, the top entry

e of H is removed, and if e is dominated by

some object in S then e is discarded.

Otherwise, in case that e is an intermediate

node, each child eiof e is checked if it is

dominated or not by some point in S, and if

not then eiis inserted inH. In case that e is a

data node, then any contained object

which is not dominated by some point in S,

is also inserted in S. The algorithm

terminates when the heap is empty and the

final skyline S is reported.

y

O x

Fig. 5. BBS algorithm example

Let us consider our main example of

Figure 1. Data points are organized in a

simple R-tree with node capacity 4 as

depicted in Figure 5. The R-tree has only

two levels, the root node R and the data

nodes N1,N2,N3,N4. The NN algorithm starts

from the root node R and inserts all of its

entries into the heap H with their

corresponding minimum distances, i.e. H =

{(N1,6), (N2,13), (N3,19), (N4,25)}.
Initially S = ∅. Node N1 is the top heap
object, thus it is expanded and all of its

points are inserted into the heap with their

minimum distances (N1 is removed), i.e.,

H = {(b,9), (e,11), (N2,13), (h,14),(g,18),

(N3,19), (N4,25)}.

Point b is the top heap object, and

c k

n
R

N 2
f

N4

j
a d

i
p

b N1

e

g
m

N3

l
h

o

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

thus, it is removed from H and it is inserted

in S (S = {b}). Point g and node N4 are also

removed from H as they are dominated by b

∈ S; therefore, H = {(e,11), (N2,13), (h,14),

(N3,19)}. Then, point e is the top heap
object, thus it is removed from H and it is

inserted in S (S = {b,e}). Points b,edo not
dominate any remaining heap entry, thus H

= {(N2,13), (h,14), (N3,19)}.

Next, node N2 is the top heap object;
thus it is expanded and all of its points are
inserted into the heap with their minimum

distances (N2 is removed), i.e., H = {(a,13),

(h,14), (d,19), (N3,19), (c,26), (f,27)}. Now
point a is the top heap object, thus it is

removed from H and inserted in S (S =

{a,b,e}).

Points c,d,fare also removed from H as

they are dominated by a ∈ S, thus H =

{(h,14), (N3,19)}. Then, point h is the top

heap object, thus it is removed from H and

it is inserted in S (S = {a,b,e,h}).

Points a,b,e,hdo not dominate any

remaining heap entry, thus H = {(N3,19)}.

Node N3 is theonly heap object, thus it is

expanded and all of its points are inserted

into the heap with their minimum distances

(N3 is removed), i.e., H = {(l,22), (o,24),

(m,27)}. Points l,mare also removed from H

as they are dominated by h ∈ S, thus H =

{(o,24)}. Point o is the only heap object and

it is not dominated by any other object of S,

thus it is removed from H and inserted in S

(S = {a,b,e,h,o}). Finally, the heap H is

empty and the algorithm terminates.

In [29] an R-tree-based algorithm is

proposed, which is a variation of BBS that

adopts a DFS technique with a “forward

checking” based on a “region dominance”

relation to reduce space complexity. The

algorithm is I/O optimal and requires a

logarithmic space in the worst case in the

2D space if there are not many overlaps in

the R-tree.

SKYLINES IN SUBSPACES AND

CONSTRAINED

There has been much investigation on the issue of

users' potential interest in skyline queries in data

subspaces. In [35], a system is developed for

computing the skyline in any given subspace using

skyline groups and decisive subspaces. Based on

this architecture, we offer an effective method

called SKYEY, which uses a top-down strategy to

iteratively calculate the skyline in subspaces. The

number of potential results may be narrowed down

using pre-sorting techniques and multidimensional

roll-up and drill-down analyses. The SKYCUBE,

suggested in [36], [50], is a similar concept; it is the

union of the skylines of all non-empty subsets of a

given dimensionality. In order to efficiently share

computational resources across several relevant

skyline queries, a number of mechanisms are used.

The SKYCUBE is suggested to be effectively

computed using both bottom-up and top-down

techniques.

The recovery of the subspace skyline is also the

focus of a distinct strategy, the SUBSKY, which is

presented in [41], [42]. As a result of this

procedure, the dataset may be indexed using a

single B-tree, which can be applied in any

relational database, simplifying the data from

several dimensions. The suggested approach is

further improved by using several efficient pruning

heuristics.

In [48], the issue of updating the skycube in a

constantly changing environment is investigated. In

order to strike a good balance between query and

update costs, we suggest a structure called the

compressed skycube. In [33], we offer a fast

technique called STELLAR for computing

compressed skyline cubes; this algorithm computes

skyline groups and decisive subspaces without

exploring all subspaces for skylines, saving us time

and effort. STELLAR avoids looking for subspace

skylines in all appropriate subspaces by merely

computing the whole space skyline and using the

skyline to build multidimensional skyline groups

and their decisive subspaces. The issue of

optimizing multi-user skyline searches across many

subspaces was investigated in [17]. The CDCA

method is presented as a fast cell dominance

calculation solution that can handle any single

subspace skyline question. To synthetically

optimize multiple subspace skyline searches, we

next present a second technique, the AOMSSQ

algorithm, which is based on CDCA.

Subspace skyline inquiry on high-dimensional data

is addressed using described techniques in [19].

Skyline computation is conducted solely on a

subset of potential skyline objects in the subspace,

whereas query processing mostly consists of basic

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

pruning procedures.

Limited Subspace Horizon Query research may be

found in [9]. You might think of this group of

queries as a broader version of range-constrained

subspace skyline searches. The STA algorithm,

which makes use of multiple indexes, is presented

as a solution to this issue. To determine which

areas are dominant and which index subtrees may

be safely discarded, STA employs a variety of

pruning techniques.

DISTRIBUTED AND PARALLEL

TECHNIQUES

Distributed skyline searches may be executed

quickly using the techniques provided in [1], [27]

under the section on index-based algorithms. In

[48], researchers provide a different approach to the

issue of parallelizing skyline query execution

across a cluster of workstations by using content-

based data segmentation. DSL, the suggested

distributed method for processing skyline queries,

finds skyline objects in stages.

In [46], the processing of skyline queries via P2P

networks is investigated. To better regulate the

peers accessed and search messages during skyline

query processing, we offer a mechanism called SSP

that splits and numbers the data space across the

peer nodes.To execute skyline processing without

identifying the beginning peer, [47] introduces the

SKYFRAME technique, an extension of the SSP

approach.

Since it is practically difficult to ensure

comprehensive and correct query replies without

extensive search, [13] presents a research on

effectively processing skyline inquiries in large-

scale P2P networks. To lessen the burden on nodes,

approximate methods backed by probabilistic

assurances are presented. Similar methods are

presented in [23], which suggests using

approximation algorithms to allow skyline

questions in situations when obtaining accurate

responses would be too expensive. Using heuristics

based on the local semantics of peer nodes, the

suggested methods efficiently provide replies of a

high quality. In [14], we find a comprehensive

review of skyline processing in extremely dispersed

settings.

In [44, 45], a threshold-based technique named

SKYPEER is presented for efficient subspace

skyline processing in a P2P setting. SKYPEER

distributes skyline query requests among peers in

such a manner that the quantity of data transmitted

is minimized.

In [15], the authors examine the use of MANETs

for processing "skyline queries," proposing

methods to lessen the burden of communication

among mobile nodes and speed up their individual

processing times. Additionally, [24] investigates

the topic of query processing and optimization in

WSNs. In order to efficiently calculate the skyline

with the greatest chance of existence, the method

SKY-SEARCH is presented.

SKYLINES IN DYNAMIC ENVIRONMENTS

Extensive research has been conducted on the topic

of skyline query processing in stream settings.

Skyline questions are suggested to be transformed

into many separate dynamic window inquiries in

[20], where a window-based technique is presented.

In [25], an alternative sliding window method is

described, which employs a powerful pruning

mechanism to reduce the number of required parts

to a minimum. There is more research on Sliding

Window Skylines on Data Streams in [40], where

techniques are suggested to continually analyze

incoming data and gradually update the skyline.

Both the static and dynamic dimensions are

required for a continuous skyline inquiry.

Producing a continuous and reliable skyline

summary over time is a valuable calculation over

streaming data sets in such instances. In [30], we

offer an effective skyline method for a continuous

time span. In [16], a kinetic-based data structure is

used to the query processing, offering another

approach for skyline inquiries for moving objects.

CONCLUSIONS

The methods for processing skyline queries that

have been suggested during the last decade are the

topic of this paper's survey. Because of their

widespread practicality in today's contexts, many

researchers and developers have explored and

implemented skyline queries in a wide variety of

settings. However, there are additional difficulties,

such as doing complex analysis for skyline

questions with ambiguous information.

REFERENCES
[1] W.T. Balke, U. Gunzer, J.X. Zheng: “Efficient distributed

skylining for web information systems”, EDBT, pp.256-273,

Applied GIS ISSN: 1832-5505

 Vol-4 Issue-04 Oct 2016

2004.

[2] I. Bartolini, P. Ciaccia, M. Patella: “SaLSa: computing the
skyline without scanning the whole sky”, CIKM, pp.405-

414,2006.

[3] J.L. Bentley, H.T. Kung, M. Schkolnick, C.D. Thompson:

“On the average number of maxima in a set of vectors and

applications”, JACM, Vol.25, No.4, pp.536-543, 1978.

[4] S.Borzonyi, D.Kossmann, K. Stocker: “The skyline operator”,

ICDE, pp.421-430, 2001.

[5] C.Y. Chan, H.V. Jagadish, K.L. Tan, A.K.H. Tung, Z. Zhang:
“On high dimensional skylines”, EDBT, pp.478-495, 2006.

[6] C.Y. Chan, H.V. Jagadish, K.L. Tan, A.K.H. Tung, Z.

Zhang: “Finding k-dominant skylines in high

dimensional space”, SIGMOD, pp.513-514, 2006.
[7] S. Chaudhuri, N. Dalvi, R. Kaushik: “Robust cardinality and cost

estimation for the skyline operator”, ICDE, pp.64-73,2006.

[8] J. Chomicki, P. Godfrey, J. Gryz, D. Liang: “Skyline with
presorting”, ICDE, pp.816-825, 2003.

[9] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, Y. Theodoridis:

“Constrained subspace skyline computation”, CIKM, pp.415-

424, 2006.

[10] R. Fagin: “Combining fuzzy information from multiple systems”,

PODS, pp.216-226, 1996.

[11] D. Fuhry, R. Jin, D. Zhang: “Efficient skyline computation in

metric space”, EDBT, pp.1042-1051, 2009.

[12] P. Godfrey: “Skyline cardinality for relational processing”,

FoIKS, pp.78-97, 2004.

[13] K. Hose, “Processing skyline queries in P2P systems”, VLDB

PhD Workshop, pp.36-40, 2005.

[14] K. Hose, A. Vlachou: “A survey of skyline processing in highly

distributed environments”, VLDB Journal, Vol.21, No.3, pp.359-

384, 2012.

[15] Z. Huang, C.S. Jensen, H. Lu, B.C. Ooi: “Skyline queries against

mobile lightweight devices in MANETs”, ICDE, 2006.

[16] Z. Huang, H. Lu, B.C. Ooi, A.K.H. Tung: “Continuous skyline

queries for moving objects”, IEEE TKDE, Vol.18, No.12,

pp.1645-1658, 2006.

[17] Z.H. Huang, J.K. Guo, S.L. Sun, W. Wang:

“Efficient optimization of multiple subspace

skyline queries”, Journal of Computer Science &

Technology, Vol.23, No.1, pp.103-111, 2008.

[18] W. Jin, J. Han, M. Ester: “Mining thick skylines over large

databases”, PKDD, pp.255-266, 2004.

[19] W. Jin, A.K.H. Tung, M. Ester, J. Han: “On efficient processing

of subspace skyline queries on high dimensionaldata”, SSDBM,
2007.

[20] Y. Jing, L. Xin, L. Guo-hua: “A window-based algorithm for

skyline queries”, PDCAT, pp.907-909, 2005.

[21] D. Kossmann, F. Ramsak, S. Rost: “Shooting stars in the sky: an
online algorithm for skyline queries”, VLDB, pp.275-286, 2002.

[22] H.T. Kung, F. Luccio, F.P. Preparata: “On finding the maxima of
a set of vectors”, JACM, Vol.22, No.4, pp.469-476, 1975.

[23] H. Li, Q. Tan, W.C. Lee: “Efficient progressive processing of

skyline queries in P2P systems”, Infoscale, 2006.

[24] J. Li, S. Xiong: “Efficient Pr-skyline query processing

and optimization in wireless sensor networks”, Wireless

Sensor Network, Vol.2, pp.838849, 2010.

[25] X. Lin, Y. Yuan, W. Wang, H. Lu: “Stabbing the sky: efficient
skyline computation over sliding windows”, ICDE, pp.502-

513,2005.

[26] X. Lin, Y. Yuan, Q. Zhang, Y. Zhang: “Selecting stars: the k
most representative skyline operator”, ICDE, pp.86-95, 2007.

[27] E. Lo, K. Yip, K.I. Lin, D. Cheung: “Progressive skylining over
webaccessible database”, DKE, Vol. 57, No.2, pp.122-147, 2006.

[28] H. Lu, Y. Luo, X. Lin: “An optimal divide-conquer algorithm for

2D skyline queries”, ADBIS, pp.46-60, 2003.

[29] Y. Luo, H.X. Lu, X. Lin: “A scalable and I/O optimal skyline

processing algorithm”, WAIM, pp.218-228, 2004.

[30] M. Morse, J.M. Patel, W.I. Grosky: “Efficient continuous skyline

computation”, ICDE, 2006.

[31] D. Papadias, Y. Tao, G. Fu, B. Seeger: “An optimal and

progressive algorithm for skyline queries”, SIGMOD, pp.443-

454, 2003.

[32] D. Papadias, Y. Tao, G. Fu, B. Seeger: “Progressive skyline

computation in database systems”, ACM TODS, Vol.30, No.1,

pp.41-82, 2005.

[33] J. Pei, A.W. Fu, X. Lin, H. Wang: “Computing compressed

multidimensional skyline cubes efficiently”, ICDE, pp.96-105,
2007.

[34] J. Pei, W. Jin, M. Ester, Y. Tao: “Catching the best views of

skyline: a semantic approach based on decisive subspaces”,

VLDB, pp.253-264, 2005.

[35] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W.

Wang, Y. Tao, J. Yu, Q. Zhang: “Towards

multidimensional subspace skyline analysis”, ACM

TODS, Vol.31, No.4, pp.1335-1381, 2006.

[36] F.P. Preparata, M.I. Shamos: “Computational geometry: an
introduction”, Springer-Verlag, New York, Berlin, 1985.

[37] M. Sharifzadeh, C. Shahabi: “The spatial skyline queries”,

VLDB, pp.751-762, 2006.

[38] K. Tan, P. Eng, B. Ooi: “Efficient progressive skyline

computation”, VLDB, pp.301-310, 2001.

[39] Y. Tao, D. Papadias: “Maintaining sliding window skylines on

data streams”, IEEE TKDE, Vol.18, No.3, pp.377-391, 2006.

[40] Y. Tao, X. Xiao, J. Pei, “SUBSKY: efficient computation of

skylines in subspaces”, ICDE, 2006.

[41] Y. Tao, X. Xiao, J. Pei: “Efficient skyline and top-k retrieval in
subspaces”, IEEE TKDE, Vol.19, No.8, pp.1072-1088, 2007.

[42] E. Tiakas, A.N. Papadopoulos, Y. Manolopoulos: “On

estimating the maximum domination value and the

skyline cardinality of multidimensional data sets”, IJ of

Knowledge-based Organizations, Vol.3, No.4, pp.61-83,

2013.

[43] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis:

“SKYPEER: efficient subspace skyline computation over

distributed data”, ICDE, pp.416- 425, 2007.

[44] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis:

“Efficient routing of subspace skyline queries over highly

distributed data”, IEEE TKDE, Vol.22, No.12, 1694-

1708, 2010.

[45] S. Wang, B. Ooi, A. Tung, L. Xu: “Efficient skyline query

processing on P2P networks”, ICDE, pp.1126-1135, 2007.

[46] S. Wang, Q.H. Vu, B.C. Ooi, A.K. Tung, L. Xu:

“Skyframe: a framework for skyline query processing

in P2P systems”, VLDB Journal, Vol.18, No.1,

pp.345-362, 2009.

[47] P. Wu, C. Zhang, Y. Feng, B.Y. Zhao, D. Agrawal, A.E. Abbadi:

“Parallelizing skyline queries for scalable distribution”, EDBT,

pp.112130, 2006.

[48] T. Xia, D. Zhang: “Refreshing the sky: the compressed skycube

with efficient support for frequent updates”, SIGMOD, pp.491-

502, 2006.

